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Abstract. We recalculate the proton Dirac form factor based on the perturbative QCD factorization the-
orem, which includes Sudakov suppression. The evolution scale of the proton wave functions and the
infrared cutoffs for the Sudakov re-summation are carefully chosen such that the soft divergences from
large coupling constants are diminished and perturbative QCD predictions are stabilized. We find that the
King–Sachrajda model for the proton wave function leads to results which are in better agreement with
experimental data than those from the Chernyak–Zhitnitsky wave function.

1 Introduction

Since the proposal of the improved perturbative QCD
(PQCD) factorization formulas for exclusive processes,
with the Sudakov re-summation taken into account [1],
there have been many applications in the literature, such
as the pion form factor [2], photon annihilation into pions
[3], the proton form factors [4,5], pion Compton scatter-
ing [6], proton–anti-proton annihilation [7], and proton–
proton Landshoff scattering [8]. These studies show that in
the pion case the nonperturbative contributions from the
end points of parton momentum fractions are moderated
by Sudakov suppression, and perturbative predictions be-
come relatively reliable. However, in the processes involv-
ing protons, because more partons share the external mo-
mentum, the infrared divergences associated with soft par-
tons, which appear in hard scattering subamplitudes, are
severer. It is then a concern whether Sudakov suppression
of the end-point nonperturbative enhancements is strong
enough to maintain the applicability of PQCD to the pro-
ton form factor at currently accessible energy scales.

The improved factorization formalism has been applied
to the proton form factor [4]. However, the choice of the
infrared cutoffs for the re-summation was criticized [5]: the
end-point enhancements are in fact not diminished com-
pletely by Sudakov suppression under the above choice
of cutoffs, implying that PQCD predictions remain un-
reliable. A modified choice of the cutoffs has been pro-
posed [5], and the soft enhancements were found to be
suppressed. Unfortunately, it turned out that the PQCD
contributions amount to only half of the data, and hence
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it was concluded that higher-order or higher-twist correc-
tions may be important [5].

In this paper we recalculate the proton Dirac form fac-
tor based on the work of [4] by slightly modifying the
infrared cutoffs for the re-summation and employing the
more complete two-loop expression of the Sudakov factor.
It will be shown that the end-point sensitivity is removed,
and the PQCD predictions from one of the currently avail-
able models of the proton wave function match the ex-
perimental data well. We then confirm the applicability
of the improved PQCD formalism for momentum trans-
fer around a few GeV. However, we emphasize that the
uncertainty involved in our analysis is not diminishingly
small, and that the method in [9] based on the overlap
integral of the proton wave functions may be regarded as
a complementary approach to ours.

2 Factorization

According to the PQCD theory for exclusive processes
[10], the proton Dirac form factor can be factorized into
two types of subprocesses: wave functions which contain
the nonperturbative information of the initial- and final-
state protons, and a hard subamplitude which describes
the scattering of a valence quark of the proton from the
energetic photon. The first of these cannot be calculated
perturbatively and needs to be parametrized by a model
or to be derived by nonperturbative methods such as QCD
sum rules. The second, characterized by a large momen-
tum flow, is calculable in perturbation theory. We quote
the factorization formula for the proton form factor de-
rived in [4]:
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F p
1 (Q2)

=
∫ 1

0
(dx)(dx′)(dkT)(dk′

T)Ȳα′β′γ′(k′
i, P

′, µ)

×Hα′β′γ′αβγ(ki, k
′
i, Q, µ)Yαβγ(ki, P, µ) , (1)

where

(dx) = dx1dx2dx3δ

(
3∑

i=1

xi − 1

)
,

(dkT) = dk1T dk2T dk3T δ

(
3∑

i=1

kiT

)
. (2)

P = (P+, 0,0) is the initial-state proton momentum, and
xi = k+

i /P
+ and kiT are the longitudinal momentum frac-

tion and transverse momenta of the parton i, respectively.
The primed variables P ′ = (0, P

′−,0), x′
i = k

′−
i /P

′− and
k′

iT are associated with the final-state proton. Q2 = 2P ·P ′
is the momentum transfer. In the Breit frame we have
P+ = P

′− = Q/
√

2. The scale µ is the renormalization
and factorization scale.

The initial distribution amplitude Yαβγ , defined by the
matrix element of three local operators in the axial gauge
[11,13], is given by

Yαβγ =
1

2
√

2Nc

∫ 2∏
l=1

dy−
l dyl

(2π)3
exp(iklyl)

×εabc〈0|T [ua
α(y1)ub

β(y2)dc
γ(0)]|P 〉

=
fN(µ)
8
√

2Nc
[( /PC)αβ(γ5N)γV (ki, P, µ)

+( /Pγ5C)αβNγA(ki, P, µ)
−(σµνP

νC)αβ(γµγ5N)γT (ki, P, µ)] , (3)

where Nc = 3 is the color number, |P 〉 the initial proton
state, u and d the quark fields, a, b and c the color in-
dices, and α, β and γ the spinor indices. In our notation,
1 and 2 label the two u quarks and 3 labels the d quark.
The second form shows the explicit Dirac matrix struc-
ture [11], where fN is the normalization constant [12], N
the proton spinor, C the charge conjugation matrix and
σµν ≡ [γµ, γν ]/2. The amplitude Ȳα′β′γ′(k′

i, P
′, µ) for the

final-state proton is defined similarly. By using the per-
mutation symmetry [11] and the constraint that the total
isospin of the three quarks is equal to 1/2, it can be shown
that the three functions V , A, and T are not independent
and related to a single function ψ via [11]

V (k1, k2, k3, P, µ)

=
1
2

[ψ(k2, k1, k3, P, µ) + ψ(k1, k2, k3, P, µ)] ,

A(k1, k2, k3, P, µ)

=
1
2

[ψ(k2, k1, k3, P, µ) − ψ(k1, k2, k3, P, µ)] ,

T (k1, k2, k3, P, µ)

=
1
2

[ψ(k1, k3, k2, P, µ) + ψ(k2, k3, k1, P, µ)] . (4)

The hard subamplitude Hα′β′γ′αβγ is obtained from
the photon–quark scattering diagrams, and the expres-
sions for the integrands Ȳα′β′γ′Hα′β′γ′αβγYαβγ are from
Table I in [4]. Employing a series of permutations of the
parton kinematic variables, (1) in Fourier transform space
reduces to

F p
1 (Q2) =

2∑
j=1

8π2

27

∫ 1

0
(dx)(dx′)(db)[fN(µ)]2

×H̃j(xi, x
′
i,bi, Q, µ)

×Ψj(xi, x
′
i,bi, P, P

′, µ) , (5)

with bi the conjugate variable to kiT and (db) =db1db2/

(2π)4. The explicit expressions for H̃j and Ψj in terms of
ψ are given below.

3 Sudakov suppression

The Sudakov re-summation of the leading (double) and
next-to-leading (single) logarithms in ψ leads to

ψ(xi,bi, P, µ)

= exp

[
−

3∑
l=1

s

(
xl,

1
w
,Q

)

−3
∫ µ

w

dµ̄
µ̄
γq (αs(µ̄))

]
φ(xi, w) , (6)

where the quark anomalous dimension γq(αs) = −αs/π in
the axial gauge governs the renormalization-group (RG)
evolution of ψ. The function φ, obtained by factoring the
Q dependence out of ψ, corresponds to the standard par-
ton model. The exponent s is written as [13]

s

(
x,

1
w
,Q

)
=
∫ xQ/

√
2

w

dp
p

×
[
ln
(
xQ√
2p

)
A (αs(p)) +B (αs(p))

]
, (7)

where the anomalous dimensions A to two loops and B to
one loop are

A = CF
αs

π
+
[
67
9

− π2

3
− 10

27
nf +

8
3
β0 ln

(
eγE

2

)](αs

π

)2
,

B =
2
3
αs

π
ln
(

e2γE−1

2

)
, (8)

nf = 3 being the flavor number and γE the Euler constant.
The two-loop running coupling constant,

αs(µ)
π

=
1

β0 ln(µ2/Λ2)
− β1

β3
0

ln
[
ln(µ2/Λ2)

]
ln2(µ2/Λ2)

, (9)

with the coefficients

β0 =
33 − 2nf

12
, β1 =

153 − 19nf

24
, (10)



B. Kundu et al.: The perturbative proton form factor reexamined 639

A

B

C

COM ddq typ

bmax

Fig. 1. The typical transverse distance, dtyp. The transverse
distance between the quarks A and B is the smallest among the
three quarks. The diquark constituents are therefore considered
to be the quarks A and B. The center of mass of the diquark,
COMq, is taken to be the central point of the line that connects
these two quarks. dtyp is then defined as the distance between
COMq and the third quark C

and the QCD scale Λ ≡ ΛQCD, will be substituted into (7).
The infrared cutoff w is chosen to be the inverse of a

typical transverse distance among the three valence quarks.
We try different definitions of this cutoff to determine
its influence on the final result. One possible choice is
w = 1/bmax, bmax = max(bl), l = 1, 2, 3, as adopted in [5],
with b3 = |b1 −b2|. As long as all of these mass scales are
much larger than Λ, the Sudakov form factor should not
give any suppression. As one of these scales gets close to Λ,
the Sudakov form factor tends to zero and suppresses this
region. We find that choosing the infrared cutoff in this
fashion suppresses all the infrared divergences and leads to
a self-consistent calculation of the form factor. However,
this choice does not always correspond to a typical size of
the three-quark system. A more appropriate definition is
obtained by considering it as a quark–diquark like config-
uration. The diquark constituents are taken to be those
two quarks that are closest to each other in the transverse
plane. We now define the typical transverse distance, dtyp,
as the distance between the center of mass of the diquark
and the remaining third quark (Fig. 1).

This is clearly a more reasonable measure of the dis-
tance in the three-quark system that can be resolved by a
gluon. We shall therefore take the infrared cutoff as cw, c
being a parameter that is allowed to deviate slightly from
unity. When we put c = 1, we recover the original choice
of the cutoff. Next, c is chosen such that for a large num-
ber of randomly chosen triangles, as the one in Fig. 1, we
get on average 〈dtyp/bmax〉 = 1/c. Defining c in such a
way, gives c ≈ 1.14. The introduction of this parameter
c is also natural from the viewpoint of the re-summation,
since the scale cw, with c of order unity, is equivalent to
w within the accuracy of next-to-leading logarithms [13].

We find that both of these choices of the cutoff lead to
self-consistent calculations of the form factor in the sense
that the form factor saturates at the large distance cutoff
bc. Remarkably, we find that with the small modification
of w into cw, which differs from what was used in [5],
the results are in good agreement with experimental data.
The dependence of the final results on the precise choice
of cw shows that large distance contributions cannot be
completely dismissed, and give a contribution of about

25%–50% at laboratory energies. Nevertheless, we find it
encouraging that a physically motivated cutoff gives good
agreement with experiments.

The choice of scales for the Sudakov re-summation in
(6) is compared to that adopted in [4], where the different
cutoffs bl are assigned to each exponent s and to each
integral involving γq:

ψ(xi,bi, P, µ)

= exp

[
−

3∑
l=1

(
s(xl, bl, Q) +

∫ µ

1
bl

dµ̄
µ̄
γq (αs(µ̄))

)]

×φ(xi, w) . (11)

The Sudakov factor in (11) does not suppress the soft
divergences from bl → 1/Λ completely. For example, the
divergences from b1 → 1/Λ, which appear in φ(xi, w) at
w → Λ (see Sect. 4.), survive as x1 → 0, since s(x1, b1, Q)
vanishes and s(x2, b2, Q) and s(x3, b3, Q) remain finite. On
the other hand, w should play the role of the factorization
scale, above which QCD corrections give the perturbative
evolution of the wave function ψ in (6), and below which
QCD corrections are absorbed into the initial condition φ.
It is then not reasonable to choose the cutoffs bl for the
Sudakov re-summation different from w.

4 RG evolution

The RG evolution of the hard scattering subamplitudes is
written as

H̃j(xi, x
′
i,bi, Q, µ)

= exp

[
−3

2∑
l=1

∫ tjl

µ

dµ̄
µ̄
γq (αs(µ̄))

]

×H̃j(xi, x
′
i,bi, Q, tj1, tj2) , (12)

where the explicit expressions of t are

t11 = max
[√

(1 − x1)(1 − x′
1)Q, 1/b1

]
,

t21 = max
[√

x1x′
1Q, 1/b1

]
,

t12 = t22 = max
[√

x2x′
2Q, 1/b2

]
. (13)

The first scales in the brackets are associated with the lon-
gitudinal momenta of the exchanged gluons and the sec-
ond scales with the transverse momenta. The arguments
tj1 and tj2 of H̃j denote that each αs is evaluated at the
largest mass scale of the corresponding gluon.

Inserting (6) and (12) into (5), we obtain

F p
1 (Q2) =

2∑
j=1

4π
27

∫ 1

0
(dx)(dx′)

×
∫ ∞

0
b1db1b2db2

∫ 2π

0
dθ[fN(cw)]2

×H̃j(xi, x
′
i, bi, Q, tj1, tj2)Ψj(xi, x

′
i, cw)

× exp [−S(xi, x
′
i, cw,Q, tj1, tj2)] , (14)
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with

H̃1 =
2
3
αs(t11)αs(t12)

×K0

(√
(1 − x1)(1 − x′

1)Qb1

)

×K0

(√
x2x′

2Qb2

)
,

H̃2 =
2
3
αs(t21)αs(t22)

×K0

(√
x1x′

1Qb1

)
K0

(√
x2x′

2Qb2

)
. (15)

The variable θ is the angle between b1 and b2. K0 is the
modified Bessel function of order zero. The expressions for
Ψj are

Ψ1 =
2(φφ′)123 + 8(TT ′)123 + 2(φφ′)132

(1 − x1)(1 − x′
1)

+
8(TT ′)132 − (φφ′)321 − (φφ′)231

(1 − x1)(1 − x′
1)

,

Ψ2 =
2(φφ′)132 − 2(TT ′)123

(1 − x2)(1 − x′
1)

+
(φφ′)123 − 8(TT ′)132 − 2(φφ′)321

(1 − x3)(1 − x′
1)

, (16)

which group together the products of the initial and final
wave functions in the notation

(φφ′)123 ≡ φ(x1, x2, x3, cw)φ(x′
1, x

′
2, x

′
3, cw) . (17)

(TT ′) is defined similarly based on (4) but with ψ replaced
by φ. The Sudakov exponent S is given by

S(xi, x
′
i, cw,Q, tj1, tj2)

=
3∑

l=1

s(xl, cw,Q) + 3
∫ tj1

cw

dµ̄
µ̄
γq (αs(µ̄))

+
3∑

l=1

s(x′
l, cw,Q) + 3

∫ tj2

cw

dµ̄
µ̄
γq
(
αs(µ̄2)

)
. (18)

For the wave function φ, we will consider both the
Chernyak–Zhitnitsky (CZ) model [11] and King–Sachrajda
(KS) model [14]. They are decomposed in terms of the first
six Appel polynomials Aj(xi), which are eigensolutions of
the evolution equation for the nucleon wave function [10,
15]

φ(xi, w) = φas(xi)

×
5∑

j=0

Nj

[
αs(w)
αs(µ0)

]bj/(4β0)

ajAj(xi) , (19)

with µ0 ≈ 1 GeV. The constants Nj , aj and bj are given
in Table 1. φas(xi) = 120x1x2x3 is the asymptotic form of
φ. The evolution of the dimensional constant fN is given
by

fN(w) = fN(µ0)
[
αs(w)
αs(µ0)

]1/(6β0)

, (20)

with fN(µ0) = (5.2 ± 0.3) × 10−3 GeV2 [11].
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Fig. 2. Dependence of Q4F p
1 on Q2 for the use of the KS wave

function (solid line, c = 1.14;dense-dot line, c = 1 ) and for the
CZ wave function (dashed line, c = 1.14; dotted line, c = 1).
The experimental data with error bars are also shown

5 Numerical results

In order to calculate the seven-dimensional integral (14),
we use the VEGAS Monte Carlo routine [16]. We set the
factor exp[−s(ξ, cw,Q)] to unity whenever ξQ/

√
2 < cw,

since in this small b region higher-order corrections should
be absorbed into the hard scattering [1], instead of into
the wave function, giving its evolution. Similarly, we set
the Sudakov factor exp(−S) to unity in the small b region
where it includes a small enhancement. As cw approaches
Λ, the Sudakov factor vanishes, implying that the whole
integrand of (14) also vanishes.

First we choose the parameter value c = 1. The re-
sults of Q4F p

1 for Λ = 0.2 GeV from the use of the KS
wave function, along with the experimental data [17,18],
are shown in Fig. 2. The PQCD predictions amount only
to about half of the data. It is then possible that higher-
order or higher-Fock-state contributions are important for
the explanation of the data, which are certainly worthy of
further studies. However, before jumping to that conclu-
sion, we investigate the effect from the freedom of varying
the parameter c. The results with c = 1.14 are also dis-
played in Fig. 2. It is found that our predictions match the
data well. Note that varying c makes a difference in the
re-summation at the level of next-to-leading logarithms,
which can be regarded as an uncertainty of our formal-
ism. Therefore, we argue that the current data can be
explained within the uncertainty of our approach.

Following [4], we should analyze how the contributions
to Q4F p

1 are distributed in the b1-b2 plane. The integration
is done with both variables b1 and b2 cut off at a common
value bc. If the perturbative region dominates, most of the
contributions will be quickly accumulated below a small
bc. The numerical outcomes (with c = 1.14) are shown in
Fig. 3. All the curves, showing the dependence of Q4F p

1
on bc, increase from the origin and reach their full height
at bc = 0.9/Λ. The curves exhibit small humps at the
high end of bc, which imply that the evolution of the wave
function gives a small negative contribution in the large b
region. A standard of self-consistency is that 50% of the
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Table 1. Appel polynomial coefficients in (19) for the nucleon wave func-
tion φ(xi, w) of the CZ and KS models [11,14] with the scale µ0 ≈ 1 GeV
[17]

j aj(CZ) aj(KS) Nj bj Aj(xi)
0 1.00 1.00 1 0 1
1 0.410 0.310 21/2 20/9 x1 − x3

2 −0.550 −0.370 7/2 24/9 2 − 3(x1 + x3)
3 0.357 0.630 63/10 32/9 2 − 7(x1 + x3) + 8(x2

1 + x2
3) + 4x1x3

4 −0.0122 0.00333 567/2 40/9 x1 − x3 − (4/3)(x2
1 − x2

3)
5 0.00106 0.0632 81/5 42/9 2 − 7(x1 + x3) + 14x1x3

+(14/3)(x2
1 + x2

3)
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Fig. 3. Dependence of Q4F p
1 on the cutoff bc with the KS

wave function for Q2 = 12 GeV2 (dotted line), Q2 = 16 GeV2

(dashed line), Q2 = 25 GeV2 (dense-dot line), and Q2 = 36
GeV2 (solid line)

whole amount of Q4F p
1 is accumulated from the region

with αs/π smaller than 0.5. Based on this standard, the
results with Q2 > 10 GeV2 are reliable. Therefore, the ap-
plicability of PQCD to the proton form factor at currently
accessible energy scale Q2 ≈ 35 GeV2 is justified.

The CZ wave function is also employed, and the cor-
responding results are shown in Fig. 2. It is observed that
the values are only about 2/3 and 3/4 of those derived
from the KS model with c = 1.14 and c = 1, respectively,
and are far below the data. Hence, we claim that the KS
proton wave function is more phenomenologically appro-
priate.

6 Conclusion

In this work we have modified the choice of the infrared
cutoffs for the re-summation, and employed the more com-
plete two-loop expression of the Sudakov factor compared
to the previous analyses. With these modifications, we
have been able to explain self-consistently the experimen-
tal data of the proton Dirac form factor for Q2 > 10
GeV2. It has been found that the KS wave function is
phenomenologically more appropriate than the CZ model.
Though the coupling constant αs is not so small that we

could consider the perturbative results as exact, the non-
perturbative region denoted by b → 1/Λ does become less
important in our analysis as shown in Fig. 3. A comple-
mentary study based on nonperturbative approaches such
as QCD sum rules and the determination of the transition
scale of the proton form factor to PQCD, as performed in
[6], may provide further justification. The contributions
from higher Fock states should also be investigated, which
may be important in the intermediate energy range.

Compared to the case of the pion form factor [1], the
uncertainty at the level of next-to-leading logarithms is
more serious here, indicating that the leading logarithms
collected by the suppressing factor exp(−s) are not strong
enough in the proton case. Therefore, higher-order correc-
tions to the evolution of the wave function need to be
computed in order to extract the best choice of the pa-
rameter c. In this paper, however, we use a physically
motivated definition of c along with the KS wave func-
tion. The uncertainty in this parameter can be absorbed
into the universal proton wave function, which can then
be used to study other QCD processes consistently. This
viewpoint can be checked by applying our formalism to
other processes involving proton in the future.
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